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NATTONAT. ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL: NOTE 4408

THE THEORY OF DIFFUSION IN STRAINED SYSTEMS

By Louis A. Girifalco and Hubert H. Grimes

SUMMARY

Because the current theory of solld-state diffusion is limited to
unstrained crystals and cannot be applied readily to strained systems,
Fick's first end second laws were generalized to include the effects of
strain on the diffusion rates. The nonhomogeneity introduced into the
atomic jump frequency by strain was found to contribute strain-dependent
terms to the diffusion equations in addition to the terms conteining the
concentration gradient.

Fron a consideration of the effect of strain on the free energy of
activation, it can be shown that for simple strains, such as those re-
sulting from compression, tension, shear, and hydrostetic pressure, the
diffusion coefficient is an exponential function of the lattlice parameter.
An exsmination of the available experimental data for the variation of
diffusion coefficients with pressure confirms this theoreticel prediction.

The theory presented herein states that the magnitude of the varia-
tion of the diffusion coefficient with pressure depends on the interatomic
Porces as the diffusing atom moves from lis equilibrium position to the
activated position. On the basis of this theory, a parameter depending
upon the interatomic forces cen be computed from the experimental data.

In all cases investigated, the magnitudes of this parsmeter were 1n agree-
ment with the known characteristics of the interatomic potential-energy
functions of the systems.

The effect of plastic flow on the diffusion rate was also studied
by considering the rate at which vacancies are produced by dislocation
motion and the rate at which vacancies condense ai inhomogeneities in
the crystal. The resulting equations predict that for a vacancy mecha-
nism the diffusion coefficient wvaries linearly with the strain rate.
This conclusion is in agreement with experiment.
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INTRODUCTION

The theory of diffusion in solids has been the subject of a great
deal of investigation 1n recent years and satisfactory theoretical models
have been constructed that adequately describe the basic diffusion proc-~
esses in many simple solids. Present theories, however, are limited to
unstrained crystals and are not strictly applicaeble to stralined systems.
Since the diffusion rate i1s determined by the energy of interaction be-
tween the diffusing atom and the crystal lattice, end since this energy
depends on the interstomic distances, 1t 1s to be expected that the dif-
fusion coefficlents will be altered by a strain superimposed on the crys-
tal. Some experimental evidence is availsble that indicates that elastic
strain can increase the self-diffusion coefflclent by as much as a factor
of 2 (ref. 1) and that plastic strain can increase the self-diffusion
coefficient by an order of magnitude (refs. 2 and 3). Also, it is well
known that hydrostatic pressure decreases the diffusion coefficient; in
fact, a pressure of 7500 atmospheres is sufficient to lower the self-
%iffusign coefficient of sodium by an order of magnitude at 90° C

ref. 4).

If the crystal is strained in a nonhomogeneous manner, another fac-
tor becomes operative in addition to those that control the change in the
diffusion coefficlent. According to the theory of irreversible processes
(ref. 5), every thermodynamic flux is proportional to every thermodynamic
force so that the diffusion flux is proportionel not only to the concen-
tration gradients, but 1s also proportionsl to the strain gradients in
the crystal. Thus, not only is the magnitude of the diffusion coefficient
changed by a generalized strain, but the basic character of the diffusion
equations is also changed. N -

Because of the important role played by diffusion processes in many
solid-state phenomena such as oxldatlon, the annealing of radiation damsge,
creep, and rupture, and in view of the wide varlety of spplicatlons in
which materials are under. strain, & thorough understanding of the effects
of strain on diffusion is highly desirable.

In this report the theory of diffusion in stralned systems i1s developed
from the point of view of molecular kinetics, the fundamental physical fac-
tors involved are discussed, and the resulting theory is compared with ex-
isting experimental data.

BASIC EQUATIONS OF DIFFUSION THEORY

Generalizations of Fick's first and second laws are obtained for the
diffusion of a single specles in & crystalline lattice by a modification
of the method of conditional transition probsbilities (ref. 6). The dif-
fusion equations are expressed in terms of atomic jump frequencles without

L]
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the usual condition that the Jump frequency is independent of position.
In this form, the equations can easily be applled to a strained lattice.

Consider a volume element dF in the crystal centered about the
point defined by the position vector Y. The number of particles of the
diffusing specles contained in d¥ 1is given by N(T,t)d¥ where N(Z,t)
is the concentration of diffusing species at the position ? and time t.
In general, the number of particles in the volume element d¥ is not
constant because particles are continually jumping out of d¥ while other
particles are Jumping into d¥ from adjacent portions of the crystal.

The rate at which N(r,t) changes as a result of these two processes can
be calculated as follows: If A(r, ', 1) dr'dt is the conditional proba-
bility that an atom in the volume element d¥ Jumps to the volume elgment
an? during time dt, then, the number of particles that Jjump from dr to
a#* in time 4t is given by

N(Z,t) A, P7,t)dF aF' dt (1)
and the total number of particles that jump out of d¥ during time 4t
is obtained by integrating over-all dr' that is,

N (2,t)a at = N(F,+)dF at ]; AR, P, t)aR (2)
r!
where N (r t) is the rate at which particles leave the volume element
dr.

Similarly, the number of particles that Jump from %! to d* dur-
ing time dt dis given by

N(Z,t) A(T,T,1)dT dr' at (3)

and the total number of particles that jump into d? from other parts of
the crystal is given by

1'v+(i~“,t)di-” dt = dr dt f": N(Ft,t) AR, T, t)dP! (4)
r

vhere N (r,t) is the rate at which particles enter the element d¥. The

net rate of increase of N(T,t) is obtained by subtracting equation (2)
from equation (4):

%I%Q L' N(Z',t) A(F,F,t)aF - N(F,t) f?- A(R, P, ) a (5)
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At this point it is convenlent to express. equation (5) in terms of
the Jump distance (r -5") by performing a 'transformation of variables so
that '

T=7rt-1 (8)

In terms of the jump vector Sc’, equation (5) becomes
- -
gl; - J'if Nz + X,t) AT + X,7,t)& - N(T,t) A A(T,T + X,t)aX (7)

The function AT + .}-(P,r,‘b) :Ls the probability frequency that & par-

ticle at r + X will jump to r, and if the vector X would always
terminate at a point that is capable of accommodating the diffusing per-
tlcle, A would equal the atomic Jjump frequency. There are cases, how-
ever, such as in diffusion by the vacancy mechanism, in which the terminus

of 5(’ cannot always accommodate the migrating particle. The Jjump fre-
quency must then be multiplied by the probability that a vacant site

exists at the end of the atomic Jump. Therefore, if I’(r,x) is the atomic

Jump frequency with Jjump vector f and n(r,t) is the probability that
a site at ¥ is vacant (i.e., 1t can accept the Jjumping pa;rticle), then,

o(z + X,-X) n(r,t) }

r(7,+X) n(r + %,t)

- = -
Alr + X,7r,t)
- (8)
AT, + %,1t)

-y
Substituting equation (8) into equation (7) and arbitrarily replacing X
with the equally valid negative argument -}-() in the first integral of
equation (7) gives

% = n(T,t) fg N(r - X,t) I(z - X,X)dX - N(z,t) A r(7,+X) n(r + X,t)ax
(9)

In crystalline solids, I' 1is zero for all Ju.mp vectors except for a

small number of X's, which may be denoted by )‘i—' I' may then be expressed
as a8 delte function

r@d = Z ry(® 8@ - ) (10)
=1

where a 18 the totil number of possible Jumps a particle_}can meke out
of 1ts position at r. The set of possible jump vectors }Li and the

926¥
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value of & are determined by the crystal structure of the lattice.
Substituting equation (10) into equation (9) and making use of the proper-
ties of the delta function ylelds

8,
$ =@t | §F - Xe) Er(? -3 8 - N

i’ i=1

a
-N(T,t) z £y (7) 8(X - X;) n(F + %, 8)&X
= 1=1
i

=)
n(T,t) z :N(? - X)) Ty(T - Xy)

!

i=1
8
M) Y Ty n(@ + Xyt) (11)
i=1

It will now be assumed that the functions NI' and n can be ex-
->
pressed as a Taylor expansion in powers of Ki about the point =r, re-

teining only the first three terms of the expansion. Therefore,
M - Xp,) Ty(F - Xy) = N(Dpt) Ty(T) + X, - VALY +% (X; - V)2 a1y

(12)

n(z + i’i,t) = n(7,t) + -)t.[ . Vn +% (Ki . V)2 n (13)
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The derlvatives are evaluated at the point 7. BEguation (ll) can
now be written as

% = n(,t) NZ,t) 2 r; (?) + n(7,t) Z Xy - VNTy +

=4

%—' n(T,t) z (X; - V)2 §r -

i=1

n(Z,t) N(r,t) Z; r;(2) - Nr,t) Zri&’) X - Vo -

%N(?,t)z:ri(i-')(i’i . V)2 n (14)
i=1
a
D i-(i’i . ¥)(anTy) + 3 [no't_,L LR Nt n]z
i=1 :

(15)

Equation (15) is a genersliization of Fi_c}k’s second law and is valid
for any system regardless of the nature of Aj; or of the coordinate

system chosen. Also, if the straln is homogeneous, VI; = O. With these
restrictions, equation (15) reduces to

8

ON 1 _,= > 1.2 g

5t = 3 nlr,t) E ry(X; « 2N - 3 §(F)%) S :Pi(}‘i - ¥)%n
i=1 i=]1

The position vector F in equation {16) is referred to an arbitrary
coordinate system. It 1s always possible to £ind a transformation of
coordinates so that the posltion vector 1s referred to the principle axes

of diffusion in which mixed derivatives, such as BZN/Bx dy, vanish.

(16)

Falr Far 3
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In this case,

=3
N _ a#e) Y (Xz 3PN , .2 3% 2 BZN) i
St ix dx .2 “iy Byz iz 322
N( zt) a 2 3%n ?
z E ri Az, n +AySEt A2, Sz_g) (17)

where Ay, xiy’ and Ay, are the components of ii. The coordinates
are now referred to the principle axes of diffuslon.

Since Fick's first and second laws are connected by the equation of
continuity,

gi,:=-v-fr’n (18)

-’.
where Jy 1is the flux of specles N, Fick's first law corresponding to
the second law glven by equation (17) is

- 2 Zrix;; MZM%

-

¥

=1
-
- =) z rixfxérﬂ+i—urt E rxﬁygﬁr (19)
=1

i=1

a a
-?tz:zan N"tE:za
Jz=—§§"—)‘ 1q:l?‘iz}?'['_(zz:;) ri"izE%
i=1 J

i=1
Where Jg, Jy, and J, are the components of T

The physicel significance of the theoretical development up to this
point can be seen most clearly by a consideration of equation (14). In
the usual expression for Fick's second law in unstrained systems, all
terms except those involving the second derivative of N are zero. The
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other terms appear in equation {14), however, because it was not assumed
in the present development that I'y and n are independent of position.

The third term does not suq+to zero since, in general, 1t is not composed
of terms antisymmetric in Ay. Furthermore, since I'y and n are func-

tions of position, they must be retained in the differential operators,
and terms dependent on the first and second derivatives of Pi and n

sppear in equstion (14).

In the case of a uniform homogeneous strain, equation (14) reduces
to equation (17). If the gradient of n is zero, equation (17) becomes
equivalent to Fick's second law. In this simple case, it is necessary
only to calculate the effect of the homogeneocus strain on Pi and n In

order to specify the effect of strain on dlffusion. The effect of strain
on the Jjump frequency can be analyzed in terms of rate theory. This analy-
sls is presented in the followlng section. The effect of strain on n is
dependent upon the diffusion mechanism. ¥or Interstitial diffuslon, n= 1
provided that the concentration of interstitiels is low and thet strains
do not affect this value. TFor diffusion by a vacancy mechanism, however,

n 1s the vacancy concentraetlon and will vary with strain. An analysis

of this varlation is presented in the section DEPENDENCE OF VACANCY CON-
CENTRATTOR ON STRAIN.

DEPENDENCE OF JUMP FREQUENCY ON STRATIN

According to the statlstical theory of rate processes, the jump fre-
quency is determined by the ratio of two configurational partition funec-
tions, one referring to the activated state and the other referring to
the normal state. In analyzing the effect of strain on the Jjump frequency,
the formulstion of the rate process theory in sollds glven in reference 7
18 used 1n which the Jump fregquency is glven by

. 1/2fcexp (-¢/xT) do
I'= (E;
fexp (-@/kT) av
v

where k is Boltzmann's constant, T 1s the temperature, eand ¢ 1s the
potential energy of the system as a function of all the coordinates of
all the stoms in the crystal. The integrel in the numerstor of equation
(20) is evaluated over & hypersurface ¢ 1in the conflguration space so
that the surface passes through the point corresponding to the diffusing
atom a8t its activated position with all other atoms at their equilibrium
position. The hypersurfece ls slso required to be perpendicular to

(20)

TP ST,
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contours of constant potential energy in the configuration space. The
hypersurface defined in this manner divides the configuration space 1lnto
two symmetric parts. The integral in the denominator is evaluated over
the configurastion volume v of one of these symmetric parts.

Equation (20) wag derived for the case of an unstralned crystal.
However, i1t is applicable to strained crystals if the potentlal energy
¢ 1is taken to be a function of the six strain components Eqp 28 well

as the atomic coordinates g;. A simlilar procedure has been used in ref-
erence 8 in an analysis of the statistical mechanics of crystal lattices.
Thus, the potential energy in equation (20) is given by

o = o(qy, £4p) (21)

where g3 represents the set of all atomic coordinates and eyg repre-
sents the set of six independent strain components.

The potentiald © can be expanded in a Taylor series ghout the nor-
mal lattice configuration in the unstrained state to give

0 o0 o)
¢ = ¢(q3,0) + (T) dqs + ( ) Eopn +
J’ Zj YJo,0 ° t8)0,0 °F

Js a, B Y
7,5
-3
. qusa’B BG_Q,E%QG o’o-l- e o o« (22)

J,a,B

where qg represents the set of atomlc coordinates when all the atoms

are in their mesn positions for the normal state of the crystel, and the
double zero subscript indicates that the derivatlves are evaluated at the

point (qg,o).



10 NACA.TN 4408

If the potential energy is expanded about the point (q* 0) , where

qj represents the mean atomic coordinates when the system is in the
activated state, then,

¥ 3 3
SEEADNC LD NN
J

a,p
1 >2 1 32
= 8q.:5 =
D B0 e 1) e e
Jrk a,B
T,%
E i (25)
8q & + . . ow 23
b \Seapdey )i, o0 ;
J,o, B

The subs;ript $,0 1ndicates that the derlvatives are evaluated at the
point (qJ,O).

Since the point (qg,O) corresponds to an unstrained crystal with all

atoms in a mean position so that the crystel is at the bottom of a poten-
tial well, the first derivatives in equation (22) vanish:

(g%)o,é ) (5%)0,0 =0 (5

The point (q?,o) corresponds to a saddle polnt wilth respect to the
atomic coordinates qj, so that the derivative of .@ wilth respect to

43 also vanishes at this point. However, (qj,O is not a saddle point

or a minimum point with respect to the strains and, therefore, the derlva-
tive at this polnt with respect to the stralns does not vanilsh:

o
(BT;_%) =0 (25)

(),

926%
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Equations (22) and (23) therefore become

1 82¢ 1 32
= o) +3 Se 5o 8q.:8 = r%—
@ = ola},0) +3 E :(qj Cl1:)0,0 Uk T2 E :(%B Sra)o,oamf‘s’s ¥

Jrk a,B
L
( 2% ) 8q Seyn + (27)
Ssasaqj 0,0 of
J,a,yB
and
— ola¥ 9 !
¢ = 9(aj,0) + E (%ﬁ)q:, + 5 <qj qg Bq,8q,
a,p Jrk

_1.2 : d” E o 5 28
> (ga—lﬁ%rg) GmBGTG <+ (&;&15)*,0 qJ&CCrB + . . . ( )

a,B J,a,B
Y55

Substituting equations (27) and (28) intoc the denominator and numera-

tor of equation (20), respectively, gives

-
£.(q) exp |- jé- Z

Bq:¢ az¢ do
45%aB \Seqpda;)t,0

T =<§?)1/2 gle) = t i

) £5(a) ex |- == Z

32
8(1380:3 (sﬁfl—)o’o dv

af™"j

(29)
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where IE is the Jjump frequency in the strained system and where the
functions g(e), f:(q), and fo(q) are defined by

1 d 32
g(e) = exp - W (gs&)*’ €ap - ZkT 50&551'5 ("a,B T5)

G,
T}
32
;;%— 30
(sa’ﬁ GYS)O,O ( )
and
1 + 1 %0
f3(a) = exp |- 3% 0(a3,0) - 55 50300 )¢, 0 O%40% (31)
2

Jsrk
and )
fola) = exp |- & ‘P(QJJO) 2k.T E <‘1,3 qk)o o Z%s%% (32)

The functions fi(q) and fp(q) are the Boltzmann factors of the
potential energy expanded.about the saddle point of the sctivated state

and sbout the minimum of the normel crystal. Therefore, in the unstrained

case, equation (20) mey be written as

ff;;(q) do
r l/ (33)

v

Therefore, multiplying and dividing equation (29) by Tu, the Jump
frequency in the unstralned crystal, gives

’
1
i 2: ®dy%ap

32
5355%3 1,0

PS = I’u g(s)
-

mk (34)

exp
N Jra, B
T KT Z 033%ap seasgqa 0,0
- J,%, B Iy

926%
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where the statistical mechanical averages are given by

1 azg
exp |- ﬁ Z 8@38@ <SGB q:j):l;,o

lj,d'B o

1 E‘ 32
f:F(q) exp |- T qusa’B (B?a,ﬁ%qj);t’o do

JsoB

2

(35)
and
i S & r%az _
exp - kT q‘J d‘ﬁ SG’B q'j 0,0 -
rj} v
fola) exp -% B8q 3848 < (qu)o,o v
J,aB
v
/fo(Q) av
v
(36)

If the exponentials in equation (34) are expanded and only the first
two terms in each expansion are retained,

32
1- 5 Z Ban)s cap (&;ﬁ‘%})*,o
r=r, g(e) Joof = (37)
1- .éf— Z <8q‘3>v GG‘B <§Gaﬁgq;j)0,o

JraB
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However, in both the activated and normal states, the aversge dis-
Placement of an atom from its mean position is zero; that is,

o), = fag), =0

and equation (37) reduces to
I' = Pu g(ﬁ) (38)

If the quadratic terms in the strain in equation (30) are neglected
relative to the linear terms, substituting equation (50) into equation

(34) gives _
=T, exp- -z (52—2-;)*,0 eop/kT (39)

af
Equation (39) shows that the jump frequency has a simple exponential
dependence on the strains and that thls dependence is controlled by the

derivatives of the potentisl energy with respect to the strains evaluated
at the saddle point of the actlivated state.

Equation (39) gives the general relation between the jump frequency
and the straln that will be used in this report. If the straln matrix
and .the interatomic forces are known, the effect of the strain on the
jump frequency can be computed.

: To illustrate the epplication of equation (39), three special cases
wlill be consldered:

(1) Uniform compression or expansion in which

Exx = Byy = Ezp = & (40)

(a1l other strains = 0)
(2) simple shear in which

Eyy = Eyy = B _ (41)

(all other strains = 0)

. 926%
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(5) Simple elastic tension or compression in the x-direction, in
which

sm = GL
(42)
Syy = Szz = ~HEy
where § is Poisson's ratio

For these three cases, equation (39) gives:

For uniform compression or expansion,

Ty = Iy exp [- 2 (%%)*,0] (43)

For simple shear,

Ty = Ty exp [— -2-;% @3:)4;,0] | (44)

For simple elastic tension or compression in the x-direction,

& 21LE
Tg = Ty exp [} E% (%%i)i,o + ;TT (%gé)¢,%] (45)

Since strong repulsive forces come Into play as the diffusing atom
moves to the activated position, the derivatives in equation (39) and
equatione (43) to (45) are all negative. Thus, negative strains, cor-
responding to & compression of the lattice, decrease the jump frequency
and positive strains, corresponding to an expansion of the lattice, result
in an increase in the jump frequency. This conclusion is in accord with
what is expected on a simple physical basis.

The preceeding equations are in agreement with the resulis of refer-
ence 9. On the basis of & simple model, which takes into account only
nearest neighbor interaction, the effect of internal straine resulting
from impurlty atoms on the diffusion coefficient was computed (ref. 9),
and it was found that the diffuslon coefficient is an exponential func-
tion of the strain. :

DEPENDENCE OF VACANCY CONCENTRATION ON STRAIN

It was pointed out in the section BASIC EQUATIONS OF DIFFUSION THEORY
that the quantity n appearing in the generslized Fick's laws (egs. (17)
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and (19)) has a different interpretation for different mechanisms of dif-
fusion. For dllute interstitial diffusion, n = 1 provided there are no
gsources of interstitials, and Vn = O wvwhether or not the system is
strained. For diffusion by a vacancy mechanlism, however, n 1s the atomic
fraction. of vecancies in the crystel glven by

n = ;—; ' (46)
where
n, vacancy concentration
NT totel number of lattice slites per cec.
It is therefore necesssry to investlgate the variation of n, with strain.
The concentration of vacancies in a crystzl at equilibrlum is given
by
n, = Ny exp (-AGy/kT) (47) -
where . »
Dy vacancy concentration in the absence of strain
AGv Gibb's free energy of formation of a vacancy

In a strained system, the free energy of formation of a vacancy may
be different from that in an unstrained system, so that the wvacancy con-
centration depends on the strain.

If the stralns are constent in time, the vacancy concentrestlon is
also constant Iin time. However, during plastic deformation, vacancles
are produced at a rate that depends on the strain rate (ref. 10}. The
general equation for the vacancy concentration 1s then

926¥ '

n3.= n, + Np exp (- Gs/kT) (48)
where
E% excess average concentration of vacancies arising from the plastic -

strain

‘Aﬁz Gibb's free energy of formation of & vacancy in the stralned system *
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The analysis in this section consists of two parts: (1) the effect
of static strains on the free energy of vacancy formation, and (2) the
effect of plastic flow on ny.

The Helmholtz free energy A of a perfect crystel is given by sta-
tlstical mechanics as

3N
exp (-A/kT) = / . .[exp (-¥o/KT) ']_l' dpy day (49)
=1

for a system of N particles, where Vg 1s the energy of the system
expressed as & function of the coordinates a3 and momenta p j* For a

crystal containing s single vacancy, the Helwmholtz free energy is given
by

=1

where ¥y and V¥, are the energies of the system in the perfect and

Imperfect crystals, respectively. Therefore, since AG = AA + P AV, the
Gibb's free energy of vacancy formation 1s given by

3N
/. . /exp (-W‘v/dT) TTdPJ dq‘_l
F1

exp (-AG,/kT) = — exp (-P AV,/kT)
f. . ./exp (-¥o/aT) 'ﬂ' dpj day
3=1

3N
exp (-A,/kT) = f “ . [ exp (-¥y/kT) TT @y dag (50)

(51)
where
P Ppressure
AV. volume chaenge upon formation of a vacancy

v
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If the phase integral is separated into configuratlon and momentum
integrals, assuming the classical statistics of a crystal vibrating with
normal mode frequencies, equation (51) becomes

f exp (-9,/kT) dq r (o)
exp (-AG,/kT) = ./F J

exp (-P AV /kT) (52)

exp (-9o/KT) dg T“ (Vi3
J

where (“O)j i1s the vibration frequency of the jth vibrational mode in
the perfect crystal and (Vv)j is the frequency of the j'B vibrational

mode in the crystal containing a vacancy. The integrals in equation (52)
are for the entire configursetion space.

In a strained crystal, the free energy of vacancy formation is given
by an equation analogous to equation (52)

J/;xp (-98/xT) aq | | (voly
exp (-AG3/KT) = d exp (-P AVS _/kT)
J/rexp (-93/kT) dq v7)y
J
(53)

where the index s refers to the strained crystal.

An estimate of the effect of straln on the vibratlon frequencies can
be made from Gruneisen's relation (ref. 11)

dln v
dinv. " T (54)

where
v volume

T positive constant

9267
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Integrating equation (54) for each of the vibrational modes as the
crystal goes from the unstrained to the strained state ylelds.

(v(s)) s AV =Y \
o, ™ e+%)
) (55)
s
(VV) . _ <l +éE)-T
Z”vsj v }

It is evident that Gruneisen's relation leads to an equality of the
products of frequency ratios in the strained and unstrained systems, so
that combining equations (52) and (53) gives

exp [— -klﬁ (acy - AGV)] =

fexp (-9 /kT) dqfexp (-9o/xT) dq

exp [—(P AVS - P AV,) /kT:I
fexp (-9Q/kT) dqfexp (-oy/kT) dq

(s6)

The volume difference (AVy - AV,) is given by

(AVG - AVy) = (V5 - V) - (Vg - V)

(Ve - vg) - (Vg - V)

where

\' volume of perfect unstrained crystal

Vy volume of perfect unstrained crystal
Vy volume of unstrained crystal containing a vacancy

vﬁ volume of strained crystal containing s vacancy



20 NACA TN 4408

For small strains, the volume change resulting from the strain should
be relatively insensitive to whether or not the crystal contains & vacancy.

The volume differences (Vﬁ - V) and (V4 ~ V) are therefore very nearly
equal and it is sufficiently accurate to take the differemce (AVE - AV,)

equal to zero, so that the pressure~volume terms can be dropped from
equation (56).

If the potential energy Punctions ¢3 and (pg are now expanded in

terms of the strains and the atomlc dlsplacements about the set of points
corresponding to zero strains and mean atomic positions in the lmperfect
and perfect crystal, respectively, results asnalogous to equations (22)
and (23) are obtained. Continuing the analysis leading to equation (39)
shows that, to the first order, the free energy of vacancy formstion
depends upon the derivetives of the potential energy with respect to the
strains, evalugted at the points in conflguration space corresponding to
the atoms In their mean positions in the perfect and imperfect crystals.
However, the states corresponding to the perfect and lmperfect unstrained
crystals when all the atoms sre in theilr mean positions are both equilib-
rium states in which the systems are in potentiel wells with respect to
both atomic coordinates and strains. Thus, the first derivatives are all
zero and the free energy of formetion of a vacancy is independent of the
strains to a first-order approximation:

B
AGv_a AGv
The terms gquadratic in the strains are, of course, not zero.

The analysis shows, therefore, that the jump frequency is more sensl-
tive to strains than the energy of vacancy formstion. In any diffusion
process, the effect of strain is felt most strongly through the jump fre-
quency, and for static strains this is usually the only factor that must
be considered. Thus, %o the first order in the strains, equation {48)
may be written in the simple form _

nS = n, + Np exp (-AG,/kT)
The only problem remaining is to calculate the effect of plastic f;ow on
Ny. : -
Theory and experiment both indlcate (refs. 2, 10, end 12) that for
simple types of deformation, the number of vacancies produced by plastic
gtrain is proportional to the straein rate. In this report only simple

are consildered, including tension, compression, and shear.
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Accordingly, for the production rate of vacancles during plastic flow it
is assumed that

£l+ = Klé (57)
where

& strain rate

Ki a constant

Since the vacancy concentration during plastic flow is greater than
the thermodynamic equilibrium value, the excess vacancies will tend %o
precipitate out of the crystal matrix. It has been shown that vacancy
condensation is most probably a heterogeneous nucleation process (refs.
13 and 14) in which the vacancies precipitate gt ilmperfections in the
crystal such as grain boundaries, foreign inelusions, and voids. For such
a mechanism it 1s reasonable to postulate that wvacancies are removed from
the lattice by a first-order process. That is, the rate of destruction

1s given by
n_ = Kpn, (58)

so that the differential equation governing the vacancy concentration is

am, .
"E% = Kle - Kznx (59)
Where
t time

Ké g constant

On a microscopic scale, it is obvious that the excess concentration
of vacancles may vary considerably from one point in the erystal to
another, depending upon the distribution of the imperfections in the lat-
tice, which act as vacancy sources and sinks. However, in macroscopic
diffusion experiments, interest lies in the over-all average vacancy con-
centration. Accordingly, a bar is plasced over n, %o indicate the space
average of the vacancy concentration.

Integration of equation (59) gives

Ky

n, = % [l - exp (-th):, (60)
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and equation (48) becomes

o
nS = —%2 [1 - exp (-Kzt)] + Np exp (-AG,/kT) (61}

The mode of production of vacancles by moving dislocatiocns is dis-
cussed in some detall in references 10 and 12. As polnted out in these
references, a number of possible mechanisms exist by which moving dislo-
cations can generate vacancies. At present it does not seem possible to
perform an sccurate calculation of the rate of production of vacancies
and therefore K] must be treated as an emplirical parameter to be deter-
mined by experiment. However, it can be noted that if the generation
mechanlism involves dislocation climb, K3 wlll be proportional to the

coefficlient of self-diffusion as well as to the dislocation denslity. If
& purely geometric mechanism 1s involved, K; will depend only upon the

dislocation density. Thus, for production by a geometric mechanism,
Ky = ¢
and for production by a thermally activated mechanism,
K; = cp exp (-E/kT)
where

cy,Cp  temperature independent constants

E energy of activation for self-diffusion

The rate of destruction'of vecancies is determined by K,. Refer-

ences 13, 15, and 16 are concerned with calculating the rate of absorption
of vacancies by various types of vacancy sinks, and the remaining discus-
slon of this section is largely an extension and development of this work.

The constent Kp depends on the nature of the vacancy sinks in the

material. Obviously, different kinds of vacancy sinks are possible.
Thus, & foreign inclusion may collect vacancles and give rise to a vold
that acts as & spherical or ellipsoidal sink, and large graln boundarles
may act ag two-dimensional sinks. Dislocations may act as sinks for
vacanclies in two weys: If the energy of interactlon between a vacancy
and s dislocation line is great enough, & vacency becomes immobile and is
essentially removed from the diffusion region when it gets closer to the
dislocation line than some specifled distance - R,. The dislocation line

then gives a rise to a cylindrical sink of radius Ro‘ This type of sink

"QvAw
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is proposed in reference 16. If the energy of interaction between a
dislocation and a vacancy 1s large only at certain discrete points along
the dislocation line, such as dislocation jogs, then Ko depends on the

frequency of collision between a vacancy and a jog. This type of sink
is postulated in reference 13 in studies of precipitation of vacancies
during diffusion. Thus, four types of idealized vacancy sinks are con-
gldered: spherilcal, platelike, cylindrical, and discrete-point sinks.

Spherical Vacancy Sinks

It is assumed that a spherical sink of radius R, 1s located at the

center of a sphericel region of radius R. During plastic flow, the pro-
duction rate of vacancies is Kye, so that the spherically symmetric

steady-state diffusion equation is

o
D dn,
Y4 [2_Xx ;=
Z (r dr)+ Kye=0 (62)

where

Dv diffusion coefficient for vacancies

r radial distance from the center
o] steady-state conditions
For the purpose of this calculation, the effect of the deformation

on the coordinates in equation (62) is neglected and 1t is also assumed
that Dy 1s independent of position.

The boundary conditions chosen for the solution of equation (62) are

n3(Ryst) = O

i I
(B

Equations (63) imply that the sink is a perfect absorber of excess
vacancies and that the sinks are uniformly distributed through the crystal
in such a way that the distance between them is 2R.

(83)
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The solution of equation (62) with the boundery conditione given by
equations (63) is

: 2

Xre [R3 Rg

no_-_-,_i_ B._E%.{._..__I.'_z. (64)
x 3D, \R, r 2 2

The average concentration E; throughout the spherical volume of
radiue R 1s glven by

R
3f nOr? dr
?:" Rg 3 (5)
(r° - R3)
Performing the integration in equation (65) gives
" 3rn2 2 2 5 5
—_Ee g3 B (R* - RS} RS 1 (BR% - R3J) (66)

- — e e ———
Dy |o " 23 - B3) 6 10 (83 . 3

If Ro< <R, so that the distance between sinks is much larger than
their radius, then, at steady state,

K& R3
1 = 3% g_ (67)
v o
But from equation (59), the steady-state condition glves
Ky€ = Kpn% (68)
which, combined with equation (67), gives
3 R. D
s
o 8

or, if there are £ sinks per unit yolume,

Ky = 4x R,ED, (70)

An A
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Platelike Sinks

For platelike sinks of thickness I, and a distance 2L apart, the
boundary-value problem analogous to equations (62) and (63) is

2.0 A
0

d

D, —= + K&
vdxz 1

(71)

[}
o
~

ng(Lo)

1n°
—_ o]
& J
x=L
where x is the perpendicular distance from the plate. The solution of
equation (71) is

iy
0 = - [(m - 1) - § G2 12)] (72)

and 1f Lo< <L, the average concentration is

< 2
X el
-0 1
By = 35, (73)
2D
v
Ko = —5 (74)
2 Lz

or, if the area of the platelike sinks is approximately Lz (as would be
the case in a material of uniform grain size), then,

Ky & 2K fL (75)
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Cylindrical Sinks

For cylindrical sinks, the boundary-velue problem becomes

HiM

an®
d X .
—3 (I‘ D‘V’ ~ar )-l- KlE =

n?c(ro)

&n0
(=),
Ir=x

where

r radius of cylindricsl sink

o

2r1 distance between slnks

The solution of equation (76) is

and for To<< Ty,

and

2T T
I'lln'i‘—c')'

0

NACA TN 4408

(76)

(77)

(78)

(79)

If the sinks are dislocations of length 1, the volume per sink is

ir%l and equation (79) can be expressed as

(80)

926%
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But, f1 1s the number of dislocation lines per square centimeter, that
1s, the dislocation density Np, so that

g, - 22 (e)

Discrete Polnt Sinks

If the vacancies are destroyed by an atomic collision process, as
would be the case if only certain points, such as dislocation jogs, are
effective in trapping vacancies, the rate of vacancy destruction is pro-
portional to the collision frequency between vacancies and jogs.

The jump frequency of a vacancy ls roughly Dv/kz, and if CJ is

the dislocation jog concentration, the collision rate between excess
vacancies and Jogs is

D, C.

—_ —d (82)
n

22 X Ng

where Cj/NT is the probability that when a vacancy jumps, it runs into

a Jog. If it is assumed that all collisions result in a destruction of
the excess vacancy,

D,C
Ky = XTNTJ (83)

. Inspection of the various expressions for K2 shows that Ko 1is

proportional to the diffusion coefficient for vacancies and to the con-

centration of vacancy sinks, and depends on the geometric character of
the sink.

In additlion to the mechanisms involving migration to sinks, vacancies
may disappear by combining wlth interstitials. Since interstitials are
much more mobile than vacancies (ref. 16, ch. 5), only the diffusion rate
of the interstitials must be considered in the recombination process.

The jump frequency of an interstitial is Di/lz where Di is the diffu-

sion coefficient for the motion of interstitial atoms. If the coneentra-
tlon of interstitials is =ny, K5 1is given by

Dyny
K‘Z = IZ—N-T— (BSb)
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Thus, if the vacancles are destroyed by recomblnation with inter~
stitlals, K5 1is proportional to the diffusion coefficlent for inter-

stitiaels rather than to the diffusion coefficient for vacsncies.

In an actual crystal, several of the production and anneallng mecha-~
nlsms may be opersting simultaneously, in which case the constants Ky

and Ko, are glven by sums of the special cases described previously.

DIFFUSION COEFFICIENT AS FUNCTION OF STATIC AND DYNAMIC STRATINS

In the previous sections, the theoretical framework for an analysls
of the effect of strain on diffusion has been developed. In this sec-
tion, the previous resulte are combined to give the final funcitional
dependence of the diffusion coefficient on the strains.

From equation (19) it is evident that for an isotropic solid under
homogeneoug strein the diffusion coefficient for the flow of species N

is given by
Dy = aXZ ng T (84)

where

A lattice paremeter

8
o constant that is determined by the crystal structure

The subscript 8 refers to the stralned crystal.

Pour specisl cases of the general equatlon (84) are considered:

(1) Diffusion by an interstitial mechaniem in the presence of static
strain (strain rate, zero)

(2) Diffusion by a vacency mechanism in the presence of static strains

(5) Diffusion by an interstitial mechanism during plastic deformation
(strain rate not zero)

(4) Diffusion by a vacancy mechanism during plastic deformation.

The four dlffuslion coefflcients corresponding to these four cases will
be labeled D<é), D(Z), D(i), and D(Z), respectively.

9267
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Por case 1, ng = 1 as discussed in the section DEPENDENCE OF VACANCY
CONCENTRATION ON STRAIN and Iy 1s given by one of the equations (39), or

(43) to (45). For the purposes of this discussion it is assumed that the
deformation 1s a uniform lattice contraction, so that equation (43) glves
the dependence of the jump frequency on strain. The extension to other
types of strain is obvious. Using equation (43) and the fact that the
stralned lattice pasrameter is relsted to the unstrained latilce parameter
by the factor (1 + &) for case 1 yields

D(je-) = aX (1 + €)% T, exp [— % (g%)i-,ol (85)

For case 2, the vacancy concentration is governed by equation (47),
and to a first-order approximation 1s unaffected by strain. 8ince
ng = nv/NT, and for the homogeneous deformation case being considered Ps

is given by equation (43), the diffusion coefficient for case 2 is glven

by
D(g) = a )8 ;;Tr r, (1+ e} exp l:— % (g%)i,o] (88)

Since plastic flow does not affect the number of interstitial sites,
n_ =1 even in case 3, and a result identical to that of equation (85)

8
2 3
D(-’g) = a’? T, [1 + e(t)] exp [— 5&%} (;f)*,o] (87)

is obtained

A significant difference between equations (87) and (85) is that in
equation (87), the strain and, therefore, the diffusion coefficient, is
a function of time. Also, in equation (85), the strain that must be con-
sidered is the actual lattice strein and not the observed macroscopic
strain. Por plastic deformations, these two straine are not, in general,
equal.

For case 4, the vacancy concentration is given by equation (61).
Thus, agaln using equation (45) and the fact that ng = nv/Ni for case
4 glves

(Ve T, [1_,_8(40)]2 exp [— é%l (S%L 0]{;% i;;T [1- exp (-Kzt)]}

&

(88)
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For interstitisl diffusion, the diffusion coefficlent in the un-
strained case is

p{1) = a2 T, (89)

and for diffusion by a vacancy mechsnism in the unstrained case

n
V) =« d@2r X
n T

Therefore, equations (85) to (88) may be written as

p(1) = (1) (14 )2 exp |- 3% (g%)*,o (90)
D(g) =DV} (1 + &) exp |- % (g%)x,o (91)
D(%’) = pl1) [1 + e('t.)]2 exp |- S—EFk-TEl (%%)*,CJ (92)

D(‘-e’) = (v) [1 + s(t)]z exp [_ 3e(t) (

@), Jo B e |

(93)

These equations show how the effects of various types of strains on
the diffusion coefficient can be taken into account for different diffu-
sion mechenisms. The extension of this analysis to other diffusion mecha-
nisms is completely analogous to the present development and will not be

given here.

Tt should be noted that in the expression for D(‘.’), the strain rate

£
in equation (93) is the macroscopic strain rate, although the strain
e(t) 1s the microscopic lattice strain.

COMPARISON OF THEORY WITH EMPIRICAL DATA

The theory presented in this report makes a number of predictions
that can be checked by exlsting experimental data. In this section, an
analysis of the validity of the theory is made by comparing the theoreti-
cal results with diffusion data. The equations developed thus far are

azp®
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not always in the form most suitable for comparison with experiment.
Whenever necessary, therefore, the equations will be transformed into a
convenient form.

The only literature data available for testing equation (91) are
concerned with the effect of hydrostatic pressure on the diffusion
coefficient.

The experimental data usually give the diffusion coefficient as s
function of pressure, so that from the pressure-volume relation of the

material, the data can be obtained as a function of strain. Since
pressure-volume data are generally given in terms of AN/Vb, it is con-

venient to express €& &as a volume strain (Vb is the volume of zero
pressure). The strain & is

£ = —— = == (94)

(95)

for small strains. Therefore, using equations (94) and (95) ard also

the fact that
2/3
22 = 22 (1 + —AX) / (96)

o

changes equation (91) %o

v -2/3 v 3
D(s) (1 + %—Z) = p{7) exp [_ % (52)#,0] (97)

Therefore, 1t is evident that a plot of 1n D(T) (1 + Av/v_)-2/3
against AN/VO should be linesr with a slope m given by

m= - (%sﬁ);t o jklﬁ (98)

end en intercept given by I1n D(v).
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Several investigators have obtalned data on the variation of the
diffusion coefficient with pressure that 1s suitable for testlng equation
(97). Reference 4 presents data for the self-diffusion coefficlent as a
function of pressure for sodium, phosphorus, and mercury up to pressures
of 12,000, 4000, and 8000 stmospheres, respectively. The self-diffusion
coefflclent of liquid gallium up to pressures of 10,000 atmospheres is
glven in reference 17. The self-diffusion coefficlent for single crystal
zinc up to pressures of 10,000 atmospheres for diffusion in the directions
parallel to and perpendicular to the c-axis is determined in reference 1.

The electric conductivities of silver chloride and silver bromide
have been measured as a function of pressure up to 300 atmospheres (ref.
18). Since the conductivity 1s proportional to the diffusion coefficlent
of the silver ion by the Nernst-Einstein relation, the date of reference
18 are sultaeble for testing equation (97).

Plots of the varlation of the quantity log D(g) (1 + AV/VO)'2/5
agalinst AN/Vb for the sgelf-diffusion of sodlum, phosphorus, mercury,
and gellium are shown in figure 1. The gquantities log D(g) (14-AN/V6)'2/3

for single crystal zinc were plotted ageinst the fractional change in
lattice parameter .Al/x, since thls 1s a more natural unit for discussling
diffusion in anisotropic crystals and the linear compressions perpendicu-
lar and parallel to the c-axis are avallsble. The zinc data are plotted
in figure 2. h

Figure 3 gives log % plotted against AV/V, for silver chloride
and silver bromide where R 1s the resistivity. The volume change AV/V,
is small enough for the pressure range considered so that (1 + AN/Vb)'Z/S
does not appreciably affect the results and can be lgnored.

Compressibility data (refs. 19 to 23) were used to obtain the appro-
priate value of ANVVb for zinc, sodium, mercury, silver chloride, and

silver bromide. For gallium, AN/Vb was computed from the data of refer-
ence 22 assuming that the form of AN/Vb as & functlon 1s the same as
that for mercury. The values of AN/VO for white phosphorus were com-

puted from date from reference 24 assuming that the variation of the
fractional wvolume change with pressure has the same form as that observed
in reference 25 for black and red phosphorus.

In all cases, the avallable compressibllity data were extrapolated
to the diffusion temperature.

-
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The linearity of the plots presented in figures 1 to 3 shows that
the form of equation (97) is valid for those systems investigated within
the probable inaccuracies of the experiments and the calculations.

The slopes of the plots given in figures 1 to 3 are related to the
interatomic forces through equation (97). If the repulsive potentiel is
steep for a certain metal, that is, the atoms are "hard", then for a given
atom displacement arising from a lattlce strain, the rate of change of
the potential energy with strain is much greater than for a similarly
strained crystal containing "soft" atoms. Thus, (5¢/Bs)¢ o should be

large for hard atoms and small for atoms having slowly varying potential
functions. The quantity -1/k (3¢/35)¢ o = T has been calculated from

the slopes of the plots of D( V) (1 + AV/V )-2/3  plotted against AV/V

and the sbsolute temperatures of the avallgble diffusion experiments.
Table I summarizes these velues of m and nT.

The lowest values of mT are those for mercury and gallium. This
is to be expected since they have relatively "soft" potential functions,
and being in the liquid state, their atoms are highly mobile so that
they can adjust to the motion of the diffusing atom to give the lowest
possible values to the interatomic forces. The values of mT for the
silver halides are among the highest, and thls is entirely reasonsble in
view of the steeply rising repulsive potential a silver ilon meets as it
migrates from one stable poslition to the next. In zine, mT is much
larger for diffusion perpendicular to the c-axis than for diffusion
parallel to the c-axis. This is in accord with the fact that the nearest
neighbor distances are closer in the perpendicular direction, so that
when an atom migrates to the activated position, the change in the inter-
atomic forces is greater than for a corresponding process in a direction
parallel to the c-axis. Of &ll the solids listed, sodium has the lowest
value of mT. The interstomic potential varies relatively slowly for
sodium; in fact, recent calculations (unpublished NACA data) show that
the potentiasl well is so broad that the pairwise potentisl is repulsive
to distances as far out as 1.4 times the nearest nelghbor distance in
801id sodium. Thus the low value of mT for sodium is in agreement with
its interpretation in terms of the interstomlc forces.

The fact that ol is so much smaller for the liquid metals than for
any of the solids including sodium is indicative of the difference in the
mechanism of diffusion in liquids and solids. In a liquid, the atoms are
not constrained to remain at lattice positions so that diffusion occurs
by a cooperative process involving the migrating atom and its nearest
neighbors. Thus, the change in the interatomic forces can be kept to a
minimum throughout the diffusion process and, consequently, mT would be
very low.
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Dependence of Diffusion Coefficient on Strain Rate

In the sbsence of strain, the diffuslon coefficient D 1s gliven by
the usual expression

D = a’®v n exp (-AG/kT) (99)

For diffusion by a vacancy mechanism, n is the atomlc fractlon of vacan-
cles in ‘the crystal at egquilibrium. In a crystal undergoing plestic
deformation, the diffusion coefficient is

D(Z) = akgnsvs exp (-AG_/kT) (100)

As usual, the subscript s refers to the strained system.

If it could be postulated that at the stress levels at which plastic
flow occurs at diffusion temperatures, the effect of the strain on the
quantities A, v, and AG are negligible compared with the effect of the
strain rate on the vacancy concentration, then to a good approximation the

ratio D(X)/D(v) would be given by

D(z) 1
n

;(;)' = (101)

This postulate is a ressonable one since it is well known that moving
dislocations produce large numbers of vacancles. Also, plastic flow occurs
by the displacement of large blocks of material as a result of dislocation
motion, so that the microscopic strains defining the relative atomic
positions are much smaller than the macroscoplc strains. In fact, it is
highly probable that the microscoplc strains are slways below the elastilc
1imit of the materisl.

Recent measurements (unpublished NACA date) of the effect of dynamlec
plastic flow on the rate of diffusion of hydrogen through nickel substan-
tiate this hypothesis. The diffusion coefficient has been found to be
independent of the state of plastic strain for tensile strain rates of

0.02 to 0.4 hour_l. Since hydrogen diffuses through nickel by an inter-

gtitlial mechanism, any effect of strain on the diffusion coefflcient must
menifest itself through the quantitles - A, v, and AG. The hydrogen dif-
fusion experiments can therefore be interpreted as indicating that the
effect of plastic deformation on quantities other than the vacancy con-
centration is negligible.

‘9967
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For the simple types of dynamic strains discussed in the section
DEPENDENCE OF VACANCY CONCENTRATION ON STRAIN, ns/n is obtained by di-

viding equation‘(SI) by equation (47), so that

(v) :
%(% =1+ 2: [1 - exp (-Kzt)] (102)

Equation (102) shows that Dy increases with time up to an asymptotic
steady state at which

n(Y) K&

;(FY =1+ Ko, (103)

The time required to reach the steady state depends upon the value of
Ko. In order to obtain an estimate of Kp, it will be assumed that the

predominant type of vacancy sink is a cylinder around a dislocation line,
so that equation (81) is wvelid:

(104)

Typicel values of D, &t approximately 1000° C are in the range of 10°7

to 10-9 centimeter squared per second and a value of about 107 for
2n Nb/ln (rl/ro) has been given in reference 26, so that K; is in the

range of 1 to 10-2. Consequently, the factor [l - exp (-thi] reaches a

value of 0.9 in a time somewhere between 0.04 and 4 minutes. For the ex-
ample stated, a diffusion experiment should last at least several hours if

Dy = 10'9, and at least several minutes if D, is as high &as 10'7.

The only data available in the literature on the effect of plastic
deformation on diffusion is for the case of iron over a restricted range
of straln rates (refs. 2 and 3). Although the dete are not extensive,
and some doubt exists concernlng the absolute msgnitude of the effect
(ref. 3), a linear relation between the diffusion coefficient and the
straein rate seems to be valid. This is in sgreement with the steady-state
equation (103). In view of the scarcity of the data in this field, not
much more can be said concerning the agreement of the theory with experi-
ment. Additionsl experimental work in this area is highly desirable.
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Volume of Activetion

From & comparison of equations (97), (98), and (100), the free energy
of activetion for diffuslon 1n a system subjected to hydrostatlc pressure
varies with the volume straln according to

A
LGy = AG - m:vz kT (105)
o .
since vy x v for small lattice strains. Applying the definitlon of the
activation volume for small lattice strains gives

a(av/v,)
AV, = -mkT [—B?_o_]m _(106)
But,
AV
° 3,
=5 | =-B (107)
T

where B ie the compressibility, so that the activation volume is given
by

AV, = mBkT (108)

Table II presents values of the activation volume calculated from
equation (108) at atmospheric pressure for those systems for which data
are availaeble. Flgure 4 is a comparison of the activetion volume of
pelf-diffusion in sodium calculated from equation (108) with the activa-
tion volume calculated in reference 4 from experimentel data. The agree~
ment is seen to be good.

CONCIUSIONS

A theory was developed that relates diffusion rates 1o the state of
strain of the material. Fick's laws of diffuslon were generalized to
include the strain. The generalized equations differ from the ordinsry
diffusion equations in that the flux of diffusing material is proportional
to terms containing the straln gradient as well as to terms containing the
concentration gredient. In addition, & molecular-kinetic theory was
developed that relates the diffusion coefficlent to strain in terms of
the atomic properties of the system. e e -

926¥



497b

NACA TN 4408 37

The effect of dynamic plastic deformation on the diffusion coeffi-
clent was investigated by considering the rate of production of vacancies
by moving dislocations and the rate of precipitations of wvacancies at
vacancy sinks. The resulting equation states that the diffusion coeffi-
clent is s linear function of the strasin rate.

Several predictions that can be checked by existing experimentsel data
mgy be made from the theory:

i. For diffusion as s function of hydrostatic pressure, the diffusion
coefficient is an exponential function of the volume strain.

2. The rate of change of the diffusion coefficilent with strain is
related to the interatomic forces. The relations is explicit enough that
the variation of the diffusion coefficient with pressure can be interpreted
in terms of the interatomic potential energy functions of the material.

3. For diffusion under hydrostetic pressure, the activation volume
can be calculated from the compressibility and the rate of change of the
diffusion coefficient with volume strain.

4. Dynamic plastic deformation increases the diffusion rate, the
diffusion coefficient being lineasrly related to the strain rate at steady
state.

In every case for which data are available, these conclusions are in
agreenent with experiment.

The general framework of the theory provides a basis for understanding
the effect of strain on diffusion in terms of the molecular-kinetic prop-
erties of the system and should provide a valusble tool for comparing
diffusion rates for different states of strain, as well as for investigat-
ing the mechanism of diffusion.

Lewls Flight Propulsion Iaborstory
National Advisory Committee for Aeronsutics
Cleveland, Ohio, Sept. 2, 13858
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TABLE I. ~ COMPARISON OF VAIUES OF mT

FOR VARIOUS METAIS

Metal Temperature, m mT
T,
%k
Sodium 363 27.9110,120
Zine (1) 580 86.6 (50,200
Zine (1) 580 34.7|20,100
Mercury (liquid) 303 6.5 1,970
Gallium (1liquid) 303 6.5 1,970
Silver in silver chloride 573 91.9 (52,600
Silver in silver bromlde 573 128.0 (73,000

TABLE II. - ACTIVATION VOIUMES FOR SELF-DIFFUSION OF
VARIOUS METAIS AT 1 ATMOSPHERE CALCULATED

FROM EQUATION (108)

Metsal Temperature, Activatlon volume,
T, AV,
°K cc/g-atm
Calculated! Ixperimental
Sodium 363 ©12.3 12.3 (ref. 4)
Phosphorous
(white) 314 71.7 30.0 (ref. 4)
Zine (L) 580 3.0 4.9 {ref. 1)
Zine (11) 580 8.3 . [16.9 (ref. 1)
Mercury (liquid) 303 .62 - .57 (ref. 4)
Gallium Eliquid) 303 .82 .55 (ref. 16)
Silver in silver
chloride 573 10.3
Silver in silver
bromide 573 13.7

QAP R%
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